67 research outputs found

    Context sensitive cardiac x-ray imaging: a machine vision approach to x-ray dose control

    Get PDF
    Modern cardiac x-ray imaging systems regulate their radiation output based on the thickness of the patient to maintain an acceptable signal at the input of the x-ray detector. This approach does not account for the context of the examination or the content of the image displayed. We have developed a machine vision algorithm that detects iodine-filled blood vessels and fits an idealized vessel model with the key parameters of contrast, diameter, and linear attenuation coefficient. The spatio-temporal distribution of the linear attenuation coefficient samples, when appropriately arranged, can be described by a simple linear relationship, despite the complexity of scene information. The algorithm was tested on static anthropomorphic chest phantom images under different radiographic factors and 60 dynamic clinical image sequences. It was found to be robust and sensitive to changes in vessel contrast resulting from variations in system parameters. The machine vision algorithm has the potential of extracting real-time context sensitive information that may be used for augmenting existing dose control strategies

    Investigation into diagnostic accuracy of common strategies for automated perfusion motion correction

    Get PDF
    Respiratory motion is a significant obstacle to the use of quantitative perfusion in clinical practice. Increasingly complex motion correction algorithms are being developed to correct for respiratory motion. However, the impact of these improvements on the final diagnosis of ischemic heart disease has not been evaluated. The aim of this study was to compare the performance of four automated correction methods in terms of their impact on diagnostic accuracy. Three strategies for motion correction were used: (1) independent translation correction for all slices, (2) translation correction for the basal slice with transform propagation to the remaining two slices assuming identical motion in the remaining slices, and (3) rigid correction (translation and rotation) for the basal slice. There were no significant differences in diagnostic accuracy between the manual and automatic motion-corrected datasets (p=0.88). The area under the curve values for manual motion correction and automatic motion correction were 0.93 and 0.92, respectively. All of the automated motion correction methods achieved a comparable diagnostic accuracy to manual correction. This suggests that the simplest automated motion correction method (method 2 with translation transform for basal location and transform propagation to the remaining slices) is a sufficiently complex motion correction method for use in quantitative myocardial perfusion

    Inductive learning spatial attention

    Get PDF
    This paper investigates the automatic induction of spatial attention from the visual observation of objects manipulated on a table top. In this work, space is represented in terms of a novel observer-object relative reference system, named Local Cardinal System, defined upon the local neighbourhood of objects on the table. We present results of applying the proposed methodology on five distinct scenarios involving the construction of spatial patterns of coloured blocks

    A decision support system for urban infrastructure inter-asset management employing domain ontologies and qualitative uncertainty-based reasoning

    Get PDF
    Urban infrastructure assets (e.g. roads, water pipes) perform critical functions to the health and well-being of society. Although it has been widely recognised that different infrastructure assets are highly interconnected, infrastructure management in practice such as planning, installation and maintenance are often undertaken by different stakeholders without considering these dependencies due to the lack of relevant data and cross-domain knowledge, which may cause unexpected cascading social, economic and environmental effects. In this paper, we present a knowledge based decision support system for urban infrastructure inter-asset management. By considering various infrastructure assets (e.g. road, ground, cable), triggers (e.g. pipe leaking) and potential consequences (e.g. tra c disruption) as a holistic system, we model each sub-domain using a modular ontology and encapsulate the interdependence between them using a set of rules. Moreover, qualitative likelihood is assigned to each rule by domain experts (e.g. civil engineers) to encode the uncertainty of knowledge, and an inference engine is applied to predict the potential consequences of a given trigger with location specific data and the encoded rules. A web-based prototype system has been developed based on the above concept and demonstrated to a wide range of stakeholders. The system can assist in the process of decision making by aiding data collation and integration, as well as presenting potential consequences of possible triggers, advising on whether additional information is needed or suggesting ways of obtaining such information. The work shows an intelligent approach to integrate and process multi-source data to pioneer a novel way to aid a complex decision process with a high social impact

    Persistence of anticancer activity in berry extracts after simulated gastrointestinal digestion and colonic fermentation

    Get PDF
    Fruit and vegetable consumption is associated at the population level with a protective effect against colorectal cancer. Phenolic compounds, especially abundant in berries, are of interest due to their putative anticancer activity. After consumption, however, phenolic compounds are subject to digestive conditions within the gastrointestinal tract that alter their structures and potentially their function. However, the majority of phenolic compounds are not efficiently absorbed in the small intestine and a substantial portion pass into the colon. We characterized berry extracts (raspberries, strawberries, blackcurrants) produced by in vitro-simulated upper intestinal tract digestion and subsequent fecal fermentation. These extracts and selected individual colonic metabolites were then evaluated for their putative anticancer activities using in vitro models of colorectal cancer, representing the key stages of initiation, promotion and invasion. Over a physiologically-relevant dose range (0–50 µg/ml gallic acid equivalents), the digested and fermented extracts demonstrated significant anti-genotoxic, anti-mutagenic and anti-invasive activity on colonocytes. This work indicates that phenolic compounds from berries undergo considerable structural modifications during their passage through the gastrointestinal tract but their breakdown products and metabolites retain biological activity and can modulate cellular processes associated with colon cancer

    An anomalous event detection and tracking method for a tunnel look-ahead ground prediction system

    Get PDF
    The complicated geological conditions and unexpected geological hazards beyond the face of a tunnel are challenging problems for tunnel construction, which can cause great loss of life and property. While the geological surveys conducted before tunnel construction can provide rough information of construction site, they are not sufficiently accurate for predicting the sudden geological condition changes in local areas. Within the EU NETTUN project, an on-board ground prediction system consisting of multiple ground penetrating radars (GPR) and seismic sensors were developed to “see through” the ground and provide the local ground information behind the excavation front surface of a TBM (Tunnel Boring Machine). In order to facilitate the interpretation of the imaging data captured by this system, an automatic event detection and tracking method is presented in this paper. Anomalous 2D features are detected on each radar profile and reconstructed into a 3D accumulator; then, probable 3D events are detected from the accumulator and tracked at subsequent locations based on the information from multiple sets of radar data. The detection results can be used to generate alarms or be sent to human operators for interactive interpretation. The proposed method was evaluated using two sets of GPR data captured in a designed test field. Experimental results show that the buried targets can be correctly detected by the proposed event detection and tracking method. The proposed method is sufficiently flexible to cope with variations on the spatial configuration of on-board sensors
    corecore